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LIQUID CRYSTALS, 1995, VOL. 19, No. 4, 401407 

Topological point defects in liquid crystalline polymers 

by JOHN HOBDELL and ALAN WINDLE* 

Department of Materials Science and Metallurgy, Pembroke Street, 
Cambridge University, Cambridge CB2 342 ,  England 

(Received 21 January 1995; accepted 13 April 1995) 

The full range of point defects of the type described by Poincar6 is defined in terms of the 
disclination loop which would transform them into a monodomain. Calculations of energy of 
the points as a function of the defining angle, a, give the relative contributions of the splay, twist 
and bend components. Defects observed on fracture surfaces of a quenched liquid crystalline 
polymer are consistent with the point geometry predicted to have minimum splay distortion, and 
thus accountable for in terms of the high splay elastic constant characteristic of the polymeric 
nematic state. 

1. Introduction 
In 1886, just two years before Rcinitzer [ l ]  saw 

iridescent colours in esters of cholesterol which pointed to 
their liquid crystallinity, PoincarC [2] derived equations 
for point singularities in vector fields. His work was later 
summarized by Nabarro [3] who related it to observations 
of point defects in liquid crystals. 

Frank's equation [4] for the free energy density of a 
distortion field in liquid crystals may be used to calculate 
the energy associated with possible point defects. Energies 
are expressed in terms of the three elastic constants of 
orientational distortion: namely splay, twist and bend. In 
liquid crystalline polymers, splay distortion is energeti- 
cally unfavourable compared to twist and bend [5] and this 
difference will influence the configuration of the point 
defects which are most stable and thus likely to be 
observed. 

The work reported in this paper involves the calculation 
of distortion energies for PoincarC point singularities with 
the graphical illustration of representative examples. It 
also exploits the availability of thermotropic liquid 
crystalline random copolymers [6] which provide a 
mesogenic medium in which melt defect structures can be 
quenched to a glass and examined by fractography. The 
crystallinity which does occur has virtually no effect on the 
microstructure, while the ability to examine bulk samples 
by fractography or sectioning side-steps the difficulty due 
to surface effects encountered in the observation of thin, 
molten specimens, as is necessary for conventional liquid 
crystals. 

2. Point defects 
It is possible to define a topological charge for a point 

singularity in a vector field as 

where 0 and q are arbitrary coordinates on the surface D, 
and n is the vector field [7]; this topological invariant was 
first derived by KlCrnan [8]. In a nematic liquid crystalline 
material, the director field can be described by a vector 
field with the proviso that n = - n. Hence the topological 
charge may be either positive or negative depending on the 
choice of direction for the vectors representing the director 
field. Since this choice is arbitrary, it only makes sense to 
refer to the magnitude of the topological charge and not 
the sign. In true vector fields, this sign refers to whether 
the singularity is a source or a sink. The point singularities 
which PoincarC described all have a topological charge of 
magnitude one. Higher order points are mathematically 
possible, but are not considered further here. In addition, 
all of PoincarC's points have a special axis and a special 
plane. For the geometries considered here, the special 
plane is a mirror plane coincident with the x-y plane and 
the special axis is a rotational symmetry axis parallel to z .  

PoincarC derived his points from a vector field of the 
form 

n, = U ~ X  + bly + C I Z ,  

* Author for correspondence. 
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402 J.  Hobdell und A. Win& 

Table I .  Poincark's classification of the various point singularities in vector fields depended on the eigenvalues found from cquation 
(3). This table summarizes his classification and relates it to the characteristic angle, LX, used here to provide a continuous variable 
against which distortion energies for the various configurations are plotted. 

Point x a, 22 2 3  

Noeud 0" Real, positive Real, positive Real, positive 

Foyer 0" < r <  90" Real, positive Complex conjugates 
(real part positive) . .  

Centre 90" Real, positive Imaginary Imaginary 
Complex conjugates 

Col: foyer 90" < a < 180" Real, positive (real part negative) 
Col 1 SO" Real, positive Real, negative Real, negative 

He distinguished various possibilities by considering the 
eigenvalues found from 

( 3 )  

and used the nature of the roots, as listed in table 1, as a 
basis for classification. He also chose a simple algebraic 
example to illustrate each class, naming them noeud, 
fuyer. centre, col-foyer and col. These French terms 
translate as knot, focus, centre, saddle-focus and saddle, 
although modern Russian literature refers to a noeud as a 
hedgehog and a col as a hyperbolic hedgehog, with 
possibly some descriptive advantage. 

2.1. Visualizing points 
Computer graphics programs have been written to aid 

in the visualization of Poincark's points, the vector field 
being represented by an appropriate selection of stream- 
lines. Each streamline is traced from a chosen starting 
point in accord with equation ( 2 ) .  A representative sample 
of the possible configurations is drawn in figure 1. In 
addition to the three-dimensional visualization of each 
point, sections both on the special plane and through the 
special axis are represented in figure 1 using the 'nail 
convention'. 

2.2. Examples of points 
The limiting cases of the PoincarC range are the noeud 

(hedgehog) and the col (hyperbolic hedgehog). The noeud 
has a radiating field with spherical symmetry. It is 
analogous to the electric field around an isolated point 
charge. The col exhibits the phenomenon of splay-splay 
compensation [5].  On the special plane, the splay 
distortion is cancelled out, since it splays away from the 
origin in  the plane and splays towards the origin 
pcrpendicular to the plane. This reduction in splay cncrgy 
in the col type point defect is emphasized by Press and 

Amott [9] for the case of nematic droplets. This singularity 
is analogous to the flow field produced when two fluid jets 
impinge on each other. 

2.3. ClassiDing points 
Poincark's five classes of point should not belie the fact 

that there is a continuous variation in configuration 
between the limits of the noeud and the col, there being no 
topological distinction between the classes. It is helpful, 
therefore, to consider a description in terms of a single 
smoothly changing variable. Such a variable can be found 
by considering the nature of the disclination loop, lying on 
the special plane of the point (normal to z figure I ) ,  which 
would represent the topological transformation of the 
point into a monodomain. 

Such loops, of ideal form, have the property that the R 
vector (the axis of rotational distortion) maintains a 
constant angular relationship with the disclination line as 
it curves around the loop. It can have any angle with 
respect to the disclination line. They have been termed 
type I1 loops [ 101 to distinguish them from type I in which 
the R vector is invariant and which shrink to self-annihi- 
lation leaving a monodomain. 

Figure 2 is an example of how the angle between the Q 
vector and the disclination line defines the geometric 
nature of the disclination. In each figure, the line is 
considered to be coming out of the page and a circuit 
around the linc is shown in a right-handed sense. 
Following the circuit around, the orientation of the 
directors, shown as thick lines, changes by 1 SO". The axis 
about which the directors rotate, which in each case has a 
different orientation with respect to the disclination linc 
(seecaption), is the R vector. For a type I1 loop where the 
rotation vector, e, is at all points anti-parallel to the 
disclination line, the line is an s = - + wedge (see figure 
2(b)).  The full loop is sketched in figure 3 and is an 
example of a tangential loop [ 101 with the rotation vector, 
- Q, parallel to the line at all points around the loop. The loop 
effectively separates a col type field, outside its circumfer- 
ence, from a monodomain within the loop. If the loop 
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404 J.  Hobdell and A. Windle 

Figure 1 .  A representative sample of the possible configurations of the point 
singularities with unit topological charge described and classified by Henri 
Poincark. For each case, an appropriate set of streamlines is plotted with the 
aid of computer graphics and 'nail diagrams' for two orthogonal sections 
through the points are given. The nail representation involves 'T' shaped 
objects with the cross of the 'T' representing the end of the vector further 
away from the observer and the length of the other line representing the 
component of the vector in the plane of the page. Nails with no cross line are 
exactly in the plane of the page. (a) A naeud or hedgehog point given by the 
defining equation n, = x l r ,  ny = y l r ,  nz = i l r .  (h)  A foyer type point given by 
the defining equation n, (x + y ) / d ( 2 ) r ,  n, = ( - x + y ) l d ( 2 ) r .  n, = dr. (c ,  
A centre point given by the defining equation n, = y l r ,  n, = - .x/r, nC = zlr. 
(6, A col-foyer type point given by the defining equation n, = ( - x + yj/ 
d ( 2 ) r ,  n, = ( - x - y ) I d ( 2 ) r ,  nz = zlr. (e)  A col or hyperbolic hedgehog 
point given by the defining equation n, = - xlr ,  n, = - y l r ,  nz = d r .  In each 
case, the vector fields arc normalized to be of unit magnitude everywhere by 
the factor r = d ( x 2  + yz + z2j. 

shrinks to a point, it will generate a col (hyperbolic 
hedgehog) point singularity. The other case of a tangential 
loop occurs when the rotation vector is at all points parallel 
to the direction of the disclination line. If such a loop were 
to shrink, a noeud (hedgehog) point singularity would be 
the result. In the particular case of a radial [ 101 loop, where 
the rotation vector is everywhere perpendicular to the 
direction of the disclination line, and in the plane of the 
loop, the loop would shrink to give a centre type point. 

As such type I1 loops effectively define a point defect, 
it is possible to classify a point singularity simply in terms 
of the angle between the Q vector and the line of the parent 
loop, the characteristic angle, a. It follows that the points 
considered above, noeud (a  = 0"), centre (a  = 90°) and col 
(a  = 180") are but examples from a continuous range of 
point configurations, the range between noeud and centre 
(0" < a < 90") being known as foyers, and between centre 
and col (90" < a < 180") as col-joyers. The specific 
examples of foyer and col-foyer type points visualized in 
figure 1 can be considered as the result of shrinking a loop 
of disclination line in which the R vector lies at 45" to the 
direction of the line (a  145")  for the foyer example (see 
figure 1 (b)), and at 135" to the direction of the line 
( x  = 135O) for the col-joyer example (see figure l(d)). 
Equations (4), written in terms of a, thus define the full 
range (see table l), which includes the specific examples 
of figure 1. 

x c o s a f y s i n x  
r 

- xsin a + ycos a 

r 

~~ n, = 

ny = (4) 

Z n = -- 
z where r = (2 + y2  + z2)1'2 r 

It is worth noting that the field lines at the special plane 
are always parallel to that plane, and follow equiangular 
spirals which intersect radii at the characteristic angle, x. 

2.4. Energies of points 
Frank's elasticity equation for the free energy associ- 

ated with a distortion field may be integrated over a 
spherical volume around a point singularity to give a value 
for the elastic energy within a spherical volume of radius 
R .  For simple cases, this integration may be performed 
analytically with relative ease. Dubois-Violette and Parodi 
11 11 have derived the energy of a noeud (hedgehog) type 
point as 

ENorud = 87~Tck11R ( 5 )  
where k l l  is the Frank splay constant, while Kurik and 
Lavrentovich 1121 give the energy of a col (hyperbolic 
hedgehog) as 

where kj3 is the Frank bend constant. 
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Point defects in LCPs 405 

Figure 2. As one takes a clockwise circuit around each of the disclination lines shown coming out of the plane of the page, the 
orientation of the director changes by 180". In (a) the axis of rotation, or R vector, is parallel to the line resulting in a t wedge 
disclination. In (b)  the R vector is antiparallel to the direction of the line resulting in a - wedge disclination. In ( c )  the R vector 
is perpendicular to the line resulting in a strength .f twist disclination line. In general, the SZ vector can be at any angle to the 
disclination line when the line will have intermediate character. 

In order to calculate the energies of the more complex 
point defects, a numerical approach has been introduced. 
The vector field surrounding the point is differentiated, 
using the REDUCE [ 131 program, to give the splay, twist 
and bend contributions to the free energy density as a 
function of the Cartesian coordinates. A simple numerical 
integration is performed by evaluating the free energy 
density at points on a three-dimensional array of cubic 
cells and multiplying by the volume of a cell, and then 
summing the values for all of the cells. By increasing the 
resolution of the array, the numerical integration con- 
verged to give agreement with the analytical values for the 
noeud and col. The convergence for a noeud is shown in 
figure 4. The numerically determined energies are given 
in table 2, based on an array of 100 linear divisions, for the 
centre (90"), the 45" foyer and the 135" col-foyer which 
are less analytically tractable. 

Figure 3. A loop of wedge disclination line L. The R vector is 
always at 180" to the line of the loop. The result is a 
cylindrically symmetric field which resembles a col or 
hyperbolic hedgehog when viewed on a scale much larger 
than that of the loop. A cross-section through the director 
field pattern is shown. 

The description of point configurations in terms of their 
transforming disclination loops gives a continuous vari- 
able, namely the characteristic angle, against which the 
splay, twist and bend energies can be plotted. Such a plot 
is shown in figure 5.  The energies are expressed in units 
of kR, where k is the relevant elastic constant and R is the 
radius of integration, the curves give a quantitative 
indication of the total amount of each distortion which is 
present in each type of point defect. 

It is interesting to note from figure 5 that the twist energy 
is zero for the noeud and col, rising to a maximum for the 
centre. Such behaviour is consistent with the fact that the 
noeud and col are the result of shrinking loops of wedge 
disclination which have no twist distortion, while the 
centre is the result of shrinking a loop of twist disclination. 
On the other hand, the splay energy, is a maximum for the 
noeud type point defect and decreases to a minimum at 

25.5 
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24.5 

W 24.0 

23.5 

23.0 

-Energy 
8n _-- -_ 
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Figure 4. Plot showing the convergence of the numerical 
calculation of the energy of a noeud or hedgehog as a 
function of the number of divisions across the diameter of 
the integration sphere. The analytical value of 8x is shown 
for comparison. 
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406 J.  Hobdell and A.  Windle 

Table 2. The splay. twist and bend energies associated with the examples of specific point defects shown in figure 1, as determined 
by the numerical method. In addition, the total elastic distortion energies are given for the widely considered case of equal elastic 
constants. Analytical values are published elsewhere for both the noeud and the col. 

Total energy for equal Individual contributions to 
constants distortion energy 

Numerical Analytical Splay Twist Bend 
Point x kR kR ki iR k22K k3.iR 

Norurl 0" 24.92 25.15 24.92 0.00 0.00 
Fover 45" 22.48 16.18 4.15 2.15 
Centre 90" 16.61 3.3 I 8.3 1 4.99 
Col-foyer 135" 10.74 2.07 4-15 4-52 
Col 1 80° 8.3 1 8-37 4.95 0.00 3-36 

- 

- 

- 

x 
P 
2 

W 

vist 

0 45 90 135 180 

N w u d  C-- Foyer + Centre - Col-foyer ---+ Col 

Alpha / Degrees 

Figure 5. Plot of splay, twist and bend energies as a function 
of the characteristic angle, a, for a series of point defects 
as defined by equation (4). 

= 1 IS" (in the col-joyer range), before rising again 
towards the col. The significance of this minimum is that 
i t  would indicate the preferred structure when the splay 
constant is much higher than the other two, as is the case 
for polymeric nematics. The existence of such a minimum 
has been recorded in [ 141 in which liquid crystal defects 
are explored as observable analogues of strings and 
monopoles in cosmological fields. Calculations by Press 
and Arrott [9] have also shown that with a certain set of 
elastic constants, a twisted, cylindrically symmetrical 
point defect has a lower energy than the radially symmetric 
point. Much research into point defects in magnetization 
fields has been performed (for a review see [IS]) and it is 
interesting to note that the point defects which could occur 
in these vector fields arc the same as the point defects 
which could occur in nematic fields, but that in the vector 
case, the strength one points cannot decompose into loops 
of strength 1 line, since such lines are disallowed. 

3. Experimental observations 
Point defects in the director pattern have been reported in 
small molecule liquid crystals by various workers. 

Figure 6. A fracture surface of a thermotropic main chain 
liquid crystalline polymer of molecular mass 5000. The 
polymer is a random copolyester of 75 per cent hydroxy- 
benzoic acid and 25 per cent hydroxynaphthoic acid: [-+-I X [-09> OO 

The director pattern, as revealed by the directional fissility, is 
compatible with an equatorial section through apoint defect 
of the col-foyer type. 

Williams er al. [ 161, observed nneuds and cnls i n  capillary 
tubes treated to impose homeotropic boundary conditions 
at the walls of the tube. More recently, Melzer and Nabarro 
[ 17, 181 have attempted to produce col-foyer type points 
by treating the tube bore to give planar, but circumferential 
boundary conditions. Although they were not successful 
with this approach, they were able to stabilize a coI$oyer 
type point defect by introducing planar, helical boundary 
conditions of opposite sense from each end of the tube. 
Point singularities have also been observed in nematic 
droplets. Laventovich and Terentjev [ 191 reported points 
in small molecule nematic droplets with character chang- 
ing from noeud to col as the elastic constant for bend 
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Point defects in LCPs 407 

increases on cooling towards the nematic-smectic phase 
transition temperature. 

Part of the motivation for this analysis has been the 
observation of features, such as that shown in figure 6, on 
fracture surfaces of samples of a thermotropic liquid 
crystalline polymer which has been quenched from the 
nematic phase. They are quite common, and any fracture 
through a 5 mm X 2 mm section will show several. The 
director field associated with the feature is consistent with 
that of a point defect with M close to 120". It is also 
pertinent to note that this angle of 'swirl' corresponds to 
a point defect with minimum splay distortion (see figure 
5).  Of all the possible point geometries considered, this is 
the one which would be energetically favoured in liquid 
crystalline phases of polymers which have a splay constant 
which is high compared with that of bend or twist. While 
this comparison is nice, it is important to enquire whether 
the structures observed really do represent isolated point 
singularities, as it is possible that the features such as that 
in figure 6 are sections through line defects. However, the 
presence of an s = 1 line defect in a nematic phase can be 
questioned on two counts, firstly that it is topologically 
unstable, tending to escape in the third dimension 
[ 16,20,21], and secondly, that it is energetically unstable 
and thus capable of lowering its energy by splitting into 
two lines each of strength + [22]. The second possibility 
is not observed, but there are reasons to suppose that when 
the splay energy is uniquely high, the tendency to split is 
much reduced, even absent altogether 1101. As observed, 
the defects give little indication of an escaped structure; 
the directors appear to lie in a plane in the central region 
rather than seeking parallelism by escaping into the 'third' 
dimension. It is very possible that the fracture path is 
selectively intersecting an escaped s = 1 disclination at the 
site of point defects along its axis, but we need further 
experimental evidence before we can be sure on this point. 

4. Summary 
(i) A point singularity can be usefully described in 

terms of a transforming disclination loop in which 
the rotation vector, R, of the disclination maintains 
a constant angle, M, with the line. The loop effects 
the transformation from a monodomain (inside 
loop) to a point field (outside), and its collapse 
generates a point singularity. The angle r charac- 
terizes the point. 

(ii) The total energies of the points (excluding surface 
energies) have been calculated as a function of kR, 
for all values of a. The splay contribution is highest 
for CI = 0" (noeud) and lowest for M = 115" (col- 

fbyer range). Twist is greatest at M = 90" (centre) 
and zero at both the noeud and col extremes, while 
bend is zero for the neoud and a maximum at 
a = 105". 

(iii) Fractography of bulk samples of a quenched main 
chain liquid crystalline polymer shows defect 
geometries which are consistent with M =  1 15" 
point singularities. Such singularities will be 
preferred in nematic polymers on account of the 
high splay energy associated with the long 
molccules. 
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sions with Prof. s. Chandrasekhar, Prof. M. Klkman, Dr 
E. M. Terentjev, and members of the Isaac Newton 
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